同城58网 软件 通往万亿晶体管芯片,关键技术揭秘

通往万亿晶体管芯片,关键技术揭秘

一度痛失芯片制造冠军宝座的英特尔,如今正对重返巅峰虎视眈眈。英特尔副总裁兼技术开发负责人Ann Kelleher上周透露,英特尔已经准备开始生产4nm芯片,并将在明年下半年转向3nm。

2、设计–技术协同优化(DTCO):工艺开发工程团队和设计团队合作,巧妙改变晶体管元件的布局,在不更改光刻栅距的情况下实现晶体管的进一步微缩。台积电、英特尔都在技术资料中多次提及这一技术路径对性能提升的贡献。

何为准单片?英特尔把很多原来在封装工厂里做的事情,转移到芯片工厂来做,也就是把很多封装的工艺流程整合到wafer fab中,让后面的封装层级看起来还是像一个单片。封装厂在准单片的基础上再做后续做封装,即准单片芯片的封装技术。

目前先进封装技术的最好预期与单芯片有约一个数量级的差距。先进封装现在能达到的最好间距是在3μm左右,而实际上在单芯片内部用先进制程做成的很多互连线宽间距在100nm甚至更小。

解决这个问题的一种思路是将通道材料换成非硅的新型材料。学术界在探讨采用二维TMD材料,即过渡金属二硫化物。这种材料形成的结构很薄,大约只有3个原子的厚度,同时电子流动性又很好。为此,英特尔在引入二维TMD作为通道材料做纳米片堆叠方面做了很多研究。

下图中间展示了其结构设计,几条Ribbon扁片通过一个灰色栅极去控制。如果扁片能做得更扁,那么同样三维尺寸可以放更多扁片,就变成了更多晶体管的门。同时如果用新的2D材料,栅极宽度又可以再缩小,更加省电。这是做RibbonFET时使用2D晶体管的好处。

接触面的面积大小与对通道的控制能力密切相关,所以英特尔做了对2D新材料的接触面积以及不同接触模式拓扑结构的分析模型。拓扑结构有从顶层接触和从边缘接触两种,还有一种是既从顶层又从边缘接触,称为混合接触。

在几种不同接触模式下,英特尔评测了它们的控制能力和电流,分析一旦将它导通,电流从什么路径走,电流强度、电压的压降如何。右边图中的二硫化钼(MoS2),即是一种过渡金属硫化物,可以形成薄片状的结构。

在探索能效存储新可能方面,英特尔在去年IEDM期间发表了在300mm硅制程上制造硅基氮化镓的晶体管的研究成果,今年又进一步分享了试验和测试的新成果——比行业标准高近20倍的增益(电阻乘以电荷量)。

它能够在截止频率上最高达到680GHz,更适用于5G基站、多天线阵列的电源管理,以及未来很多电动车需要高速充电、大电流充电的电源器件,这些都为氮化镓晶体管提供了发挥作用的广阔市场。同时,英特尔又可以让它在硅基上做这件事情,和目前英特尔300mm晶圆生产流程较为兼容,从而达到较好的生产工艺导入。

结语:先进制程和先进封装齐头并进

宋继强说,到2030年在单个设备集成上万亿级晶体管,这不是给英特尔一家设的愿景,而就像摩尔定律一样,是给产业设一个旗帜。

英特尔提出系统级代工(systems foundry)模式,是希望将原来做先进制程的经验,如对材料、制程工艺的理解,进一步延伸至封装领域。先进制程和先进封装需齐头并进,既要通过更好的晶体管设计,让芯片更小、更低功耗、容纳更多的晶体管,又能将不同工艺节点、不同厂家的芯片能够封装在一起,进一步提高系统集成度。

先进制程、先进封装、芯粒、软件工具等技术的演进,不是仅靠英特尔一家公司,而是需要更多半导体生态伙伴协同来促成标准化,实现互联互通。在开放的芯片生态系统中,标准化对于缩短新封装技术的上市时间至关重要,这需要全行业的共同努力。

本文来自网络,不代表本站立场,转载请注明出处:https://www.tcw58.com/n/a16926.html

制造,成本,技术,芯片,集成,性能,系统,工艺,晶体管,创新,摩尔定律,材料,英特尔,芯片,晶体管

同城58网后续将为您提供丰富、全面的关于制造,成本,技术,芯片,集成,性能,系统,工艺,晶体管,创新,摩尔定律,材料,英特尔,芯片,晶体管内容,让您第一时间了解到关于制造,成本,技术,芯片,集成,性能,系统,工艺,晶体管,创新,摩尔定律,材料,英特尔,芯片,晶体管的热门信息。小编将持续从百度新闻、搜狗百科、微博热搜、知乎热门问答以及部分合作站点渠道收集和补充完善信息。